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Mechanical systems subjected to an impulsive load at set times are considered. The impulsive forces depend on generalized 
coordinates and cause variation of the generalized velocities of the system. Equations of this type describe the vibrations of 
structures due to seismic shocks, the dynamics of systems of rigid bodies on a moving train or a landing aircraft, etc. The instants 
of the impulsive action may have limit points, as in the case of shocks which attenuate in a geometric progression. Various problems 
related to the stability of motion will be discussed. First, general properties of solutions with infinitely many impulse times will 
be established, namely, their existence, uniqueness and the nature of their dependence on the parameters and initial conditions. 
The results obtained enable in particular, the linearization method to be used to investigate the stability. Particular attention is 
paid to non-linear Hamiltonian systems with generalized (impulsive) potential. It is shown that such systems possess a cononical 
phase flow, and KAM-theory may be used to investigate the stability. An important part of such investigations is the problem 
of constructing the stability domain in the first approximation, the solution of which frequently involves an analysis of Hill's 
equation. A series of sufficient conditions are obtained for the stability of the trivial solution of Hill's equation with periodic 
shocks, generalizing well-known criteria which are applicable to smooth systems. The example of a pendulum whose suspension 
point is given periodic equal vertical impulses is considered in detail. © 2001 Elsevier Science Ltd. All rights reserved. 

Previously,  systems sub jec ted  to impuls ive  act ions  have been  cons ide red  on the  a s sumpt ion  tha t  the re  
ar t  no  bea t s  [1-3];  it has been  shown tha t  the  charac te r i s t ic  equa t ion  for  a l inear  H a m i l t o n i a n  system 
is r ec ip roca l  and  that  s tabil i ty is only poss ib le  in cri t ical  cases. 

1. T H E  G E N E R A L  P R O P E R T I E S  O F  T H E  S O L U T I O N  

C o n s i d e r  the  system 

~tt t , ~ ' q ) - ~ q  =Q( t 'q 'q )+ ,~aT"  I a ( q ) 8 ( t - x a ) ,  q e  R" (1.1) 

whe re  q are  gene ra l i zed  coord ina tes ,  T is the  kinet ic  energy,  Q e R n are  gene ra l i zed  forces,  Ia  are  
impulses  app l i ed  to the  system at set t imes  za in some d e n u m e r a b l e  set A,  and  6 is the  Di rac  funct ion.  
T h e  p resence  o f  impuls ive  ac t ions  causes  abrup t  changes  in the  phase  var iables  in accordance  with the  
fo rmu lae  

aT cOT 
q(x~ + O) = q(xa  - 0), -~-v-. ('~a + O) = -Z-:-. (xa - O) + I a 

d q  d q  
(1.2) 

The  set A may  have l imit  po in ts  x],  ~ ,  . . . ,  in which case it is a finite or  d e n u m e r a b l e  un ion  o f  
m o n o t o n e  increas ing  sequences ,  one  of  which may  be u n b o u n d e d ,  while the  o thers  t end  to x], ~ . . . . .  
(it  will be a s sumed  that  the  sequence  {'c]} i tself  is finite o r  increases  wi thout  l imit  and  tha t  the  number s  
x~ do  no t  be long  to A).  

We will first def ine wha t  we m e a n  by a solu t ions  of  system (1.1). 

Defini t ion 1. A funct ion  q(t)  will be ca l led  a so lu t ion  of  system (1.1), (1.2) in a t ime in terval  J, wi th  
ab rup t  changes  ( jumps)  at t ime {zk}, if: 

1) q(t)  is con t inuous  in J and  twice d i f fe ren t iab le  at  t ~ Xk, and  Eqs  (1.1) are  satisfied; 
2) the  j u m p s  are  desc r ibed  by fo rmulae  (1.2); 
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3) if 1:* is a limit point of the sequence of jump times but not itself a jump time, then the derivative 
~l(t) is continuous at t = z*. 

The last property does not follow directly from the equations of motion, but it is essential in order 
to be able to extend the solution in a unique manner to values o f t  > "c *. In mechanical terms, it means 
that there is no impulsive actions at times not in the set A. In the case x* E A, the jump is described 
by formulae (1.2). 

We specify a domain f21 = J1 × D x K n in the extended phase space of system (1.1), where J1 = [to, 
tl], tl ~ ('cl, x2), Dis  a compact domain m the configuration space, and K = (Iqjl ~ K, j  = 1, 2 . . . .  , n 
is a cube in the space of generalized velocities. 

Proposition 1. We assume that 
1) the kinetic energy T and generalized forces Q are described by functions which are continuously 

differentiable in the domain ~1; 
2) in the domain/3,  the impulses Ik are uniformly majorized by some convergent sequence of real 

numbers, that is, for any q e D we have 

IIlk(q)ll ~ ak, al + a2 + ... < '~ 

Then system (1.1) has a unique solution for any initial conditions q(t0) s D, ~l(t0) E K n. This solution 
may be continued up to the boundary of the domain f21. 

Proof. The general properties of solutions with a finite number of impulsive actions have been 
established previously [1, 2]: a unique solution exists which reaches the boundary of the domain ~1 
earlier than the time x]. It therefore remains to consider the case of solutions which includes an infinite 
sequence of impulses. 

Let uN(t) = (q(t), (t(t))N denote a solution of system (1.1) with the given initial data, which experiences 
impulsive actions (1.2) only at time zl, ~2 . . . .  ,'c N. Then, by virtue of our assumptions, {UN(Z* -0)}7v=1 
is a fundamental sequence in R 2n. In the limit as N --~ oo we obtain a solution u(t) = (q(t), q(t)) in the 
interval (to, Xl), which may be extended to t E (x~, q) in a unique manner, by virtue of the given definition 
of a solution, which it was required to prove. 

Corollary. The solution constructed may be extended in an analogous manner  to t ~ (~2, "173), etc., 
provided that the majorization condition 2 is satisfied for each of the sequences of impulses. 

We will now examine how solutions with infinitely many jumps depend on the parameters or initial 
conditions. Suppose the functions T, Q and Ic~ in Eq. (1.1) depend on a parameter  g ~ R s, where s is 
some natural number. 

Proposition 2. Assume that 
1) the kinetic energy T and generalized forces Q are described by functions which are continuously 

differentiable in the domain if21 x M, where M is a domain in the parameter  space, and the function 
Ik(q, g) are continuously differentiable in the domain/3  x M; 

2) in the domain D x M the impulses Ik are uniformly majorized by some convergent sequence of 
real numbers, that is, for any q E D, g e M, we have IIIk(q, ~t)ll ~ ak, al + a2 + . . .  < ~; 

3) in the domain D x M, the Jacobians (OIk/O~t) are uniformly majorized by a convergent sequence 
of real numbers, that is, for any q E/3,  g e M, we have II OIk(q, g)/0g [I ~< bk, ba + b2 + .. .  < oo, for 
some norm in the space of (n x s) matrices. 

Then the solutions of system (1.1) in the domain g2 x M are continuously differentiable functions of 
the parameters. In addition, for values of t such that the solution is defined, the derivative 0u(t)/0g = 
(Oq(t)/Og, Oil(t)/Og ) is the limit of the sequence of derivatives OUN(t)/O~t as N ~ ~o (the function UN(t ) 
were defined in the proof  of Proposition 1). 

The proof of this proposition is analogous to that of Proposition 1; it uses the theorem on the 
differentiability of a sequence of mappings [4]. 

Corollaries. 1. Defining the deviations of the initial data of Eq. (1.1) from certain fixed values as 
parameters, we obtain a theorem according to which solutions are differentiable with respect to the 
initial data. 

2. Proposition 2 can be generalized to the case of higher-order derivatives on the basis of the 
corresponding result for a sequence of mappings [4]. If a majorization condition of type 3 is valid not 
only for the first derivative but for all derivatives up to order m inclusive, then the Cauchy problem has 
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an m times differentiable solution, whose derivatives of orders 1 . . . .  , m for t > x* are the limits of the 
corresponding derivatives of the sequence {uN( t )} .  

Let us assume now that q°(t) is a solution of system (1.1) defined in an unbounded interval t > t 0. 
The usual definitions of stability of this solution in Lyapunov's sense and asymptotic stability may now 
be formulated. If the conditions of Propositions 1 and 2 are satisfied, the linearization method may be 
used to investigate stability. Special care is necessary in the case when the instants of impulsive action 
have a limit point ~* < o% because of the need to evaluate infinite products of Jacobians. The convergence 
of these products may be established using Proposition 2. 

2. H A M I L T O N I A N  S Y S T E M S  W I T H  I M P U L S I V E  A C T I O N S  

An important special case of mechanical systems is described by equations of the form 

dq = ~H dp = OH 

dt ~p  ' dt ~q 

where p = OT/OOt ~ R n are generalized impulses and H = H(t ,  q, p) is the Hamiltonian, which satisfies 
certain smoothness conditions. If a generalized function ZAUa(q)fi(t - xa) is added to the Hamiltonian, 
where the functions Ua(q) are differentiable, we obtain a canonical system with impulsive actions. 

d j  = a__q_.H dp =_al l  
+ Y. l a (q )8( t -Xa) ,  I~ =gradUa (2.1) 

dt ~p ' dt ~q a~A 

In a Hamiltonian system, the transformation of phase variables effected by the phase flow is a canonical 
transformation [5]. This means that, at any time t k > t 0, the relation between the initial values (q0, P0) 
of the phase variables and their values (qk, Pk) at time t = tk may be expressed in terms of a certain 
generating function S(tk,  q0, P~) by the formulae 

qk = c)S/c)Pk, P0 = c)S/c)qo 

Proposi t ion.  The phase flow of system (2.1) defines a canonical transformation for t ~ z~ (a  ~ A). 
The proof  of this proposition reduces to verifying the canonicity of the impulsive transformation of 

the phase variables at the jump times %: which is given by the formulae 

q(xa + 0) = q(xa - 0), p(xa + 0) = p(0t a - 0) + Ia(q(xa))  (2.2) 

As is easily verified, the transformation (2.2) may be defined in terms of a generating function 

Sa = q(xa - 0)P0:a + 0) + Ua(xcx - O) 

Let us assume that the interval (to, tk) contains a finite number of jump times rl ,  "c2, ... : s .  Then the 
transformation Ilk: (q0, P0) ~ (qk, Pk) may be represented in the form of a composition of canonical 
mappings 

II  k = N(Xs,  t k ) o Us o N(Xs_l ,  x s) o . . . .  U~ o N(to,  x I ) (2.3) 

where Uj is the transformation (2.2) with ct = j, and N ( a ,  b) is the transformation along the phase flow 
of the regular part of system (2.1) between times t = a + 0 and t = b - 0. Since the canonical 
transformations form a group, formula (2.3) defines a mapping of the same type. 

Now assume that the interval (to, tk) contains an infinite sequence of jump points ~2 ~ z*, and that 
the conditions of Proposition 1 are satisfied. Then the product (2.3) is infinite: 

I'I t = N(x* , tk  ) . . . . .  U s o N(Xs_l ,Xs)  . . . . .  U I o N(to,Xq) (2.4) 

We shall prove that this product converges to some canonical mapping. If the partial derivatives of 
the Hamiltonian in the relevant domain of the phase space ~1 are bounded by a constant M, then the 
mapping N(zj_b  xj) is close to an identity, that is, we have a limit 

II x - N('~j_I, xj)(x) [[4 M(T,j - "c j_ 1 )-vt~, x e f2 (2.5) 



620 A.P. Ivanov 

where I]][ denotes the Euclidean norm. In addition, the mapping Us is also close to an identity, meaning 
that 

tlx - G(x)ll = III,(x)ll ~ a, (2.6) 

Conditions (2.5) and (2.6) guarantee that the product (2.4) will be uniformly convergent, since 

a I + a  2 + . . . < ~  i4 (17 2 - ' ~ 1 ) + ( - I J 3 - , ~ 2 )  + . . . .  1:* --1:1 < 

To verify that the limit mapping is canonical, one can use a characteristic property of canonical 
mappings, such as the preservation of integrals of the form pdq along closed contours [5], which is 
conserved on taking the limit. 
Consequently, formula (2.4) defines a canonical mapping. 

Remark. In [1, 2], linear Hamiltonian systems with impulsive actions of a more general form were considered: 
all the phase variables were allowed to vary at the jumps. In the mechanical systems under discussion here, the 
generalized coordinates are continuous functions of time. 

We will now discuss the question of the stability of the equilibrium positions and the periodic solutions 
of system (2.1). Corresponding to solutions of both these types we have fixed points of the Poincar6 
mapping. A fixed point of a canonical mapping cannot be asymptotically stable, since the characteristic 
equation is reciprocal. A necessary condition for stability is that all roots of the characteristic equation 
equal unity in absolute value [5]. Sufficient conditions for stability in the case n = 1 are determined by 
the Arnol 'd-Moser  theorem [5]: to verify them, one must verify that the normal form of the mapping 
is non-degenerate in the neighbourhood of the fixed point. 

Let us assume that the Hamiltonian in system (2.1) is periodic in time with period ~, while the set 
of instants of impulsive actions is invariant to translation by z. If the functions H and I,~ are sufficiently 
smooth, the Arnol 'd-Moser  theorem may be used to investigate the stability of equilibrium positions 
and periodic solutions of system (2.1). 

Example. Consider a mathematical pendulum whose suspension point is subject to equal shock 
impulses applied periodically along the vertical. We choose units of measurement such that the length 
of the pendulum, its mass and the acceleration due to gravity are equal to unity. Then the equations 
of motion will be 

J?+sinx = ! ~ ~5(t-j'c)sinx (2.7) 

where x is the angle of deviation from the vertical, z is the time interval between successive impulses 
and I is the magnitude of the impulse. System (2.7) has equilibrium positions x = 0 and x = n (the 
lower and upper positions of the pendulum): at these points the moments of the gravity force and of 
the impulsive forces vanish. We will first study the stability of the lower equilibrium point. To do this, 
we must construct the Poincar6 mapping along the phase flow in time ~. 

When there are no impulses, Eqs (2.7) can be integrated in terms of Jacobi elliptic functions [6]. In 
the neighbourhood of the lower equilibrium position the motion with initial data x = 0, 2 -- 2k at 
t = 0 is described by the formulae 

x = 2 arcsin(k sn t), ,t = 2k cn t (2.8) 

where sn t and cn t are the elliptic sine and cosine with modulus k. Solution (2.8) can be generalized 
to arbitrary initial data, using the general properties of elliptic functions. The result is 

x 2 x sin-~=(2sntcos2+cntdntsin~)(l-sn2tsin2~)-' 
(2.9) 

~ ) - I  .2 
x=(2ocnt-sntdntsinxo) l - s n 2 t s i n  2 , k 2=x°+sin2x--0-° 

4 2 

The transformation of the phase variables in time z (Poincard mapping) is described by the 
formulae 
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Jq = x ( x ) ,  .i: I = ~c(x) + ! s i n  x ( x )  

T h e  funct ions x(x), 2(x) are def ined by (2.9). 
For  convenience ,  we will change to canonical  var iables  q, p by the fo rmulae  

q = 2 s i n  x ,  x = p c o s  x 
2 2 

In  these variables,  relat ions (2.9) and (2.10) b e c o m e  

q~ =(PoSnX(I- q@)+qocn'cdnx)(l-sn2xq-~) -~ 

(2.10) 

/ '1( ,|=(pocn'C-qosn'cdn"¢, I - s n 2 " c - ~  -- l--~-'J ~ 1 - - -  + ' q ,  (2.11) 

= ~ q0 + 1 -  p0 2 

To expand  the mapp ing  (2.11) in powers  of  q0, P0 we must  first p e r f o r m  that  ope ra t ion  for  the elliptic 
funct ions  occurr ing in it. Using expansions  of  the la t ter  in Four ier  series [7], we obtain  

k 2 
sn 1: = sin "t: + ~ (sin "¢ cos x - x) cos x + O(k 4) 

k 2 
cn "¢ = cos x - - -  (sin x cos 1; - x) sin x + O(k  4 ) (2.12) 

4 

k2 
dn x = I - - (! - cos 2x) + O(k 4) 

4 

Substi tut ing these expansions  into (2.11), we obtain 

q l = q o c o s x + p 0  s i n x +  Y~ r s GsqoPo +... 
r+s=3 

Pl = q0 ( -  sin I: + I cos't:) + P0 (cos x + I sin 1:) + 5". ~rsqoP~ +... 
r+s=3 t 

1 1 
tx30 =-:-Tsinx(sinxcosx+x), et21 = - - - c o s x ( 3 s i n x c o s x + x )  

16 I t )  
(2.13) 

I 1 
t~12 = ---16 sin x(3 sin x cos x - x), ~o3 = ~ cos x(sin x cos x - x) 

1330 = --Or03 +. let30, 1~21 = Ctl2 + Ia21'  [3J2 = --~21 + ItXIZ, 903 = ~30 + let03 

Expans ion  te rms  of  o rder  five and higher  are omi t ted  in (2.13). 
First  let us investigate the l inear  par t  of  mapp ing  (2.13). The  character is t ic  equat ion  is 

p 2 - 2 A p + I = 0 ,  A = c o s x + ( / / 2 )  sin 

A necessary  condit ion for  the lower posi t ion of  the pendu lum to be stable is 

IAI < 1 (2.14) 

I f  inequali ty (2.14) is reversed,  the equi l ibr ium posi t ion is unstable.  The  domain  (2.14) in the plane 
of  p a r a m e t e r s  x > 0, I is shown in Fig. 1 ( the unha tched  area).  The  boundar ies  of  this domain  are the 
curves I = 2 tg(x/2) and x = 2mTt (m E Z+)  (in these two cases 91,2 = 1), and also I = - 2  ctg (x/2) ( the 
dashed  curves) and x = (1 + 2m)= (and then  91,2 = -1) .  
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2 ~  

- 2 g  
0 2n 4~ 

Fig. 1 

To solve the p rob l em of  stability in the inter ior  of  the domain  (2.14) in the strictly non- l inear  sense, 
we must  reduce  mapp ing  (2.13) to normal  form. We take the canonical  l inear change of  variables in 
the fo rm 

q=lQ, p= l__L..+ocp, ~ 2 = s i n c p  
cx 2cc sin x 

The  angle to is de te rmined  f rom the condit ions cos to = A, sin to sin z > 0. 
In  the new variables,  mapp ing  (2.13) is 

QI = Q o c ° S t p + P o s i n t p +  ]~ arsQoPo+ .... 
r+s=3 

K 1 " } r o  s + . . .  Pl = -Qo  sin q~ + Po cos to + ~ "rs~e.o'o 
r+s=3 

+ = (X4(X03 a 3 0 = ~  " 30+'2 "~21+ 4 RI2 -'8 -Or03 ' a03 

a2l = ¢X21 + Z(xl 2 +3/20~03 ' a12 = 0~2~12 + 3 10~20~03 

b (  1 12 1 3 ] 1  
b30 = f 30 +Tf ,2 +-ff-f 03 - a30 

I 
b03 = Ot21303 - 2a----- T a03 

= I 3 2  / b2, --~T(~J2, + l~12 +-~ l ~o3 )-'~2 a2, 

3 11303 _ bl2 = [312 al2 

(2.15) 

This mapp ing  contains no quadrat ic  terms.  It  will the re fore  suffice to investigate two cases: 
cos to ~ 0 (the non-resonant  case) and cos tO = 0 ( four th-order  resonance) .  The  condit ion for the normal  
fo rm in the non- resonan t  case to be  non-degenera te  is [8] 

3a30 + b21 + al2 + 3b03 ~ 0 

Carrying out the necessary calculations, we obtain 
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/ 
3a30 +b2! +a12 +3b03 =-------:~(312(x-sinxcosx)+8xsin 2 ~p)~ 0 

16sincp 

By the Arnol'd-Moser theorem, this implies that the fixed point is stable. 
The case of fourth-order resonance occurs on the curve I = -2 ctg x in the parameter plane. In this 

case the inequality 

(a30 + b30 )(a3o + 2aj 2 + b03 ) > 2(a03 - b30)2 (2.16) 

guarantees stability; if the sign of the inequality is reversed, the fixed points is unstable. Calculations 
have shown that inequality (2,16) holds in the domain (2.14). 

Thus, in this example, inequality (2.14) is not only a necessary but also a sufficient condition for 
stability. 

We will now investigate what happens when the equilibrium position becomes unstable. To do this 
we consider the fixed points of mapping (2.11) close to the origin. To such points there correspond 
r-periodic motions of the pendulum. Since the total mechanical energy of the pendulum is conserved 
in the inter-shock intervals, it must also be conserved at the shocks in r-periodic motion. The simplest 
motions of this kind are described by closed curves in the phase plane which cut the ordinate axis at 
the shock times. In the interval between successive shocks, the trajectory describes either an integer 
number of revolutions about the origin (in which case the period is x) or a semi-integer number (in 
which case the period is 2x), whence we obtain 

x = 2mK(k), m ~ N 

where K(k) is the complete elliptic integral of the first kind, expansion of which [7] gives 

x = mrt(I + ~ k  2 + O(k4))  

Thus, in the plane of the parameters x, I periodic motions of the type under consideration exist to 
the right of the vertical straight lines x = rmz. Consequently, the parts of these lines in the upper half- 
plane constitute safe bifurcation boundaries of the stable lower equilibrium position of the pendulum 
and the parts in the lower half-plane are unsafe bifurcation boundaries. 

Motions of the second kind are characterized by abrupt reversal of the velocity at shocks. Motions 
of this kind are asymmetric: some of them are shown in Fig. 2: (a) I > 0, the pendulum does not pass 
through the lower position; (b) ! > 0, in the interval between shocks, the pendulum performs a complete 
oscillation plus a partial one analogous to subcase a); (c) l < 0, the pendulum passes through the lower 
equilibrium position but does not perform a complete oscillation in the inter-shock interval; (d) I < 0, 
over one period the pendulum performs a complete oscillation and one partial one analogous to subcase 
c). (For clarity, the superimposed parts of the trajectories are shown separately.) Each of the motions 
listed has a mirror image, obtained by reflecting the phase trajectory in the ordinate axis. There is an 
infinite set of families of motions of this kind, differing from one another in the number of complete 
oscillations of the pendulum per period, the sign of the impulse I and the sign of the variable x at the 
shock times. 

Using relations (2.10) and reduction formulae for elliptic functions [7], we obtain for all these families 
the equality 

/ =  2snSdn 2(on 5 ] - '  (2.17) 
2 2 /  2J 

which may be considered for given x and I as an equation in the modulus k of the elliptic functions 
(which is equal to the sine of half the maximum angle by which the pendulum deviates from the vertical 
in the motion under consideration). For small k, by formulae (2.12), Eq. (2.17) becomes 

-~--(cosx- x)+O(k4)) (2.18) l = 2 t g 2 ( l +  k2 Si: 

Since Isin xl < x, Icos xl ~< 1, the coefficient o fk  2 in (2.18) has the same sign as sin x. Hence we 
can draw the following conclusion concerning the nature of the boundary I = 2 tg (x/2) of the stability 
domain (2.14) corresponding to the roots Pl,2 = 1 of the characteristic equation: if sin x > 0 (in which 
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(a) (b) (c) (d) 

Fig. 2 

case I > 0 in (2.18)), the bifurcation boundary is unsafe, that is, unstable periodic motions coexist with 
the stable equilibrium position and disappear when the latter becomes unstable. Conversely, if sin 
x < 0, then I < 0 and the bifurcation boundary is safe, that is, stable periodic motions are generated 
when the equilibrium position becomes unstable ("pitchfork" type bifurcation). 

Periodic motions of the third kind are symmetrical and have period 2~. There is an infinite set of 
families of such motions, two of which are shown in Fig. 3: (a) I < 0 and (b) I > 0 (here again, for 
clarity, superimposed parts of the trajectories are shown separately). Taking (2.8) into consideration, 
we have the following periodicity condition 

For small k, using formulae (2.12), we can reduce Eq. (2.19) to the form 

- /cos, ,:2etch/' k2 , o k4,/ 

(2.19) 

(2.20) 

From formula (2.20) we can draw the following conclusion as to the nature of the boundary 
I = -2 ctg (x/2) of the stability domain (2.14) corresponding to roots Pl,2 = -1 of the characteristic 
equation: if sin ~ > 0 (in which case I < 0 in (2.20)), the bifurcation boundary is safe (period-doubling 
bifurcation). Conversely, if sin x < 0, then I > 0 and the bifurcation boundary is unsafe. 

Investigation of the upper equilibrium position of the pendulum proceeds along similar lines. In this 
paper we will limit ourselves to constructing the domain in which the necessary conditions for stability 
are satisfied. To do this we linearize system (2.7) in the neighbourhood ofx  = rt, putt ingy = x - ~: 

-y=l  ~ 6(t-jx) 
j=--no 

The change in the phase variables during a period is described by the formulae 

y=YoCh'C+yoshz, 3,=YoShZ+YoChZ+l(YoChZ+YoShX) (2.21) 

I 1 
I I 

I I 

<__.9 

(a) (b) 

X ( 
Fig. 3 
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The condition for stability of the linear mapping (2.21) has the form 

12 ch x + / sh xl < 2 (2.22) 

The domain (2.22) in the parameter plane is constructed in Fig. 4 (the unhatched area); unlike the 
case considered previously, it is non-periodic. It is interesting to note that this domain contains the whole 
half-line I = 2, x > 0. Consequently, periodic shocks of intensity I = 2 stabilize the upper equilibrium 
position of the pendulum, except for the dependence on the length of the time interval x between them. 
As "c is reduced, the width of the stability domain increases without limit. Analysis shows that the upper 
boundary of the stability domain (the dashed curve in Fig. 4) is unsafe, and the lower boundary is safe 
(period-doubling bifurcation). 

3. HILL 'S  E Q U A T I O N  W I T H  I M P U L S I V E  A C T I O N S  

The foremost problem in investigating the stability of solutions of Hamiltonian systems is to analyse 
the linear approximation. A case of practical importance is that of the Hill's equation 

it+ f ( t )q=O, f ( t+ 'O--  f ( t )  (3.1) 

Various method have been developed to estimate the characteristic constant of Eq. (3.1) [9], enabling 
the sufficient conditions for the stability of the trivial equilibrium position to be derived without having 
to solve a Cauchy problem numerically. One such method is based on estimating the angle of rotation 
of the solution vector during the time z. The following proposition has been proved. 

Proposition 3 [9]. Let l be a non-negative integer and c a real number such that 

Define the functions 

If 

I1t/x < c < (1+ l)r~/x (3.2) 

f~- = min{f(t), c2}, f~+ = max {f(t), c 2} (3.3) 

l~ < I i f~ (t)dt <~ I i fc+ (t)dt < (/+l)rt 
Co c 0 

then the trivial solution of Eq. (3.1) is stable. 
Let us now assume that system (3.1) experiences impulse actions: 

(3.4) 

f 

" " " ° . I .  ° 

2 
Fig. 4 
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iT + ( f(t)--ct~alaS(t -- Xa ))q = O (3.5) 

where Ia are constants and the set ['ca[ is invariant to translation by z. 
Proposition 3 admits of the following generalization. 

Proposition 4. Let the numbers l and c and the functions fc-(t) andf~+(t) be defined as in Proposition 
3. If 

'rc< l-ri f~(t)dt-S+)~ l-¢i fc+(t)dt+S-) ~,0 c t,O 

S+= 5] l~, S - = -  Y~ I~ 
• a e ( 0 , / ]  ~(x e(0, x] 

let >0 I a <0 

then the trivial solution of Eq. (3.5) is stable. 

(3.6) 

Proof. The integrals (with coefficients I/c) in formulae (3.4) and (3.6) are upper and lower limits 
for the angles of rotation of the vector-solutions of the auxiliary system with Hamiltonian 
H = 112(cp 2 -t- c -1 f(t)q 2) (in the phase plane (q, p) these angles ~(t) are measured in the clockwise 
direction) [9]. The corresponding auxiliary system with shocks has the Hamiltonian 

H=~(cp 2 +c-I(f(t)-Z laS(t-Za))q 2) 

Let us estimate the change in angles of rotation at the shocks. Since 

t g x l / - = - p - / q ,  t g~  + = - p + / q  

(the minus sign is added to take into account the reverse direction in which the angle is measured) 
andp  + = p- + c-lla, it follows that 

tg qr ~ = tg W- - c-Iia 

Applying the formula of finite increments (Lagrange's theorem), we obtain 

~1/+ = ~1/- - c-I/a cos2 ~, ~ e (~- ,  xl/+) 

Consequently, p~sitive shocks cause a decrease in the angle of rotation, by an amount not exceeding 
S+/c, and negative shocks cause an increase by an amount not exceeding S-/c. Hence follows the 
proposition we have formulated. 

Various stability criteria [9] based on estimating the integrals 

I f ~ ( t ) - c  2 Idt 
0 

can also be extended to the case of Eq. (3.5). 
To that end, it suffices to consider the Dirac functions in Eq. (3.5) as limits of a certain sequence of 

regular functionals in the space of generalized functions. We finally obtain the following propositions. 

Proposition 5. If  l I> 1 formula (3.2) and 

S ( c2 - fc( t))  dt + S+ < c(Xc - In) 
0 

"t 

o 1) 

(3.7) 

or, if I = 0 
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,g 

f( t)dt  - S + + S- >~ O, 
o 

J( fc+( t ) -c2)d t+S < 2cctg 2 
0 

the trivial solution of Eq. (3.5) is stable. 

(3.8) 

Proposition 6. If for some I e N 

x ( 12n2 ~ _ 

"CJo [ f ( t ) - - - ~ - J d t  +'CS <~ 2nl(l + l)tg 2(l + l) 

12n2 
f ( t )  >I ~ S ÷ = 0 

T2 ' 

(3.9) 

o1" 

4 
J f~ ( t )d t+S-  <~ - ,  [. f ( t )d t+S-  - S  ÷ >~ 0 (3.10) 
o "C o 

(the function f0 + was defined in (3.3)), the trivial solution of Eq. (3.5) is stable. (The formula in [9] 
corresponding to inequalities (3.10) when there are no impulsive forces contains an inaccuracy.) 

Remark. Iff(t) >I 0 and S + = 0, then the second inequality of (3.10) is automatically valid, while the first may 
be regarded as an extension of the well-known Lyapunov criterion [9] to systems with impulsive actions. 

Proposition 7. If the following conditions are satisfied for some I ~ N 

12n2 "t /12 2 "~ 
f (t)<~ ~2 , S - = 0 ,  ~l t -_ - -~ - f ( t ) l d t+ ' cS+ <lTt 2 

o k ~  3 

then the trivial solution of Eq. (3.5) is stable. 

(3.11) 

Example. Consider the linearized equations of motion of a pendulum with periodic impulsive actions 

JC + X = X l  ~ ,  ~(t--j~) (3.12) 
j=-..** 

Formula (3.6) with c = 1 implies the following conditions 

x - n ( l + l ) < l < x - n l ,  l n < ' t < ( l + l ) g ;  l = 0 , 1 , 2  . . . .  (3.13) 

Since f(t) = f~( t )  --- 1, formulae (3.10) give 

x - 4 / x < ~  l<<- x, "t~<2 (3.14) 

The generalized Lyapunov criterion describes the part of the domain (3.14) lying in the lower half- 
plane. 

Conditions (3.9) in the present case are 

,~2 _12n2 - x i  ~ 2nl(l + l)tg -----~---~ 
2(/+ !) (3.15) 

/ < 0 ,  x ~ In 

Finally, formulae (3.11) become 

x ~ l n ,  1>0,  1 2 n 2 _ ~ 2 + x l < l n  2 (3.16) 
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0 ~" 

27t 4n 

Fig. 5 

Figure 5 illustrates the domains (3.13)-(3.16), which constitute part of the stability domain (2.14) 
in the linear approximation. The horizontal hatching denotes solutions of inequality (3.13) 
(parallelograms inscribed in each of the stable components), the left-inclined hatching denotes the 
domain (3.14) (which is unbounded for x < ~), and the right-inclined hatching denotes the domains 
(3.15) and (3.16) (curvilinear triangles in the lower and upper half-planes, respectively). 

The advantage of Propositions 4-7 is that they allow sufficient stability conditions to be derived even 
where a complete construction of the stability domain does not seem possible. Thus, if the pendulum 
is subject to a periodic series of unequal shocks, its dynamics is described in the first approximation by 
the equation 

5i + x = x Y.  l ~ 8 ( t  - x a )  (3.17) 
~ E A  

where the sets {I~} and {%} are invariant to the translation of time by "c. 
The number of shocks in the interval (0, x] may be large or even infinite, but this does not prevent 

the application of the results described above. In particular, Proposition 4 implies sufficient stability 
conditions 

l r c < T - S + < ~ x + S - < ( l + l ) g ,  1=0, I, 2 . . . .  (3.18) 

while formulae (3.10) imply the conditions 

S + ~< x + S -  ~< 4 / z  (3.19) 

Propositions 6 and 7 are applicable in the case when all the impulses have the same sign. As an 
example, if the impulses I~ in the interval (to, to + x) form an infinitely decreasing geometric progression 
with common ratio q e (0, 1) and the first term is Ia < 0, then S + = 0, S- = -I1/(1 - q). The sufficient 
conditions (3.18) for stability then take the form 

l ~ < x ~ x - l l / ( l - q ) < ( l + l ) g ,  1=0, 1,2 .. . .  

and conditions (3.19) become 

( 4 / x - x ) ( I - q ) ~ <  11 ~< 0 

In addition, for stability it is sufficient for inequalities (3.15) to hold, where I = I1/(1 - q). 
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